t^2=180/16

Simple and best practice solution for t^2=180/16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2=180/16 equation:



t^2=180/16
We move all terms to the left:
t^2-(180/16)=0
We add all the numbers together, and all the variables
t^2-(+180/16)=0
We get rid of parentheses
t^2-180/16=0
We multiply all the terms by the denominator
t^2*16-180=0
Wy multiply elements
16t^2-180=0
a = 16; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·16·(-180)
Δ = 11520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11520}=\sqrt{2304*5}=\sqrt{2304}*\sqrt{5}=48\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{5}}{2*16}=\frac{0-48\sqrt{5}}{32} =-\frac{48\sqrt{5}}{32} =-\frac{3\sqrt{5}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{5}}{2*16}=\frac{0+48\sqrt{5}}{32} =\frac{48\sqrt{5}}{32} =\frac{3\sqrt{5}}{2} $

See similar equations:

| 9v−12v+v=18 | | 6y/5y=30 | | 100(.6x-2)=12(5x-16) | | 2(h+9)-4=0 | | 1x-2=5x | | -20x=10=-6-12x | | (y/4)+17=21 | | -10x+4+3x+1=12 | | 2.6x+2.8=10 | | 7m-5m-6-2= | | 5|2x-2|+8=18 | | t+1810=4 | | 40+(3+10)=x | | 8x+16=2x+4 | | 3s−–1=4 | | 3(x-5)=-+11 | | 1/2=4/3-x | | 8x^2-2x+6=5x-9 | | 22/5x+2.8=10 | | 3f÷2+20=14 | | 3(n+3)=~3 | | 90=-2p | | 1-8m=-(m-1) | | 4x+6.50x+2=65 | | 3(4-5x)=-132 | | -4(2x+8)=3x-158 | | 6x(x+3)=6x+18 | | 3x+8=4x+11+3x | | -15+x=-25 | | 5x/7−7=3 | | x2-14=15 | | 9n+5=4n-18 |

Equations solver categories